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The apparent  act ivat ion energy for mechanical  and dielectric relaxation in 
glass-forming (polymeric)  liquids: a misconception? 
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It is shown that the well-known concept of an apparent activation energy (Qapp) is confusing. Much of the 
problem with the application of thermal activation theory to glass transition disappears when the concept is 
abandoned and replaced by a strict application of the Arrhenius formula with temperature dependent 
activation energy, Q # Qapp. © 1997 Elsevier Science Ltd. All rights reserved. 
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Introduction 

In the temperature range just above glass temperature 
(Tg), the viscosity and the mechanical or dielectric relaxa- 
tion times change rapidly with temperature 1-3. In general*, 
the behaviour cannot be described by an Arrhenius 
formula: 

In r/T0 = Q / R T  (1) 

where To is the limiting relaxation time at infinite 
temperature (generally of  the order of  10 -14 s), Q the 
activation energy (independent of  T), R the gas constant 
and T the absolute temperature. A more satisfactory 
description is achieved by the WLF equation7: 

loga T = lOg(T/Tg) = -Clg ( r  - Tg)/[C2g + T - rg] (2) 

where log aT is the 1°log of  the ratio of the relaxation time 
7- (or viscosity) at temperature Tand that (Tg) at Tg whilst 
Clg and Czg are constants (subscript g denotes that Tg was 
taken as reference temperature). The WLF equation 
is equivalent to the Fulcher-Tammann-Hesse-Vogel  
equation i: 

l n r  = A + B / ( T  - T ~ )  (3) 

in which A, B and T~ are constants. The relations between 
the coefficients of equations (2) and (3) are given in ref. 6. 

For a process obeying Arrhenius formula, the In ~- vs 
1/T  plot is linear and the activation energy can be 
found from: 

Q = Rd In T / d ( 1 / T )  (4) 

This formula has a straightforward meaning only when 
Q is independent of  T. However, it is often applied to 
the non-Arrhenius behaviour at and above Tg (see for 
example refs 1 and 7-9). One then obtains the so called 
apparent activation energy (Qapp): 

Qapp = Rd In r / d  ( 1 / T) (5) 

which is R times the (varying) slope of the curved In r vs 
1 / T plot. For non-Arrhenius behaviour, Qapp necessarily 

* Some glass-forming liquids (e.g. SiO z and GeO2) show Arrhenius 
behaviour over the whole temperature range above Tg 4'5. Thus, liquid- 
glass transition is not synonymous with non-Arrhenius or WLF 
behaviour 

varies with temperature. For example, when 7- follows 
the WLF equation, equations (2) and (5) yield6: 

Qapp = 2.303RClgC2gT2/[C2g + T - Tg] 2 (6) 

A plot of the WLF equation is given in Figure 1, together 
with the course of ~Qapp. Obviously, Qapp is very large: 
about 1000 kJ mol- '  at Tg. This is larger than the energy 
to break a covalent C - C  bond, and much larger than the 
activation energies observed for secondary relaxations 
below Tg (10-100kJmol - l )  1°. Furthermore, Qapp 
rapidly changes with temperature, decreasing by a 
factor of  5 between Tg and Tg + 100°C. The occurrence 
of  such very high, temperature dependent activation 
energies prompted the well-known belief that the relaxa- 
tion at Tg is due to the cooperative motion of a large 
(temperature-dependent) number of monomer segments 
and cannot be described by thermal activation theory. 
The last point was further substantiated by the success of 
the free-volume model 1. 

It should however be realized that the use of an apparent 
activation energy is a half-hearted attempt to describe 
non-Arrhenius behaviour with Arrhenius formulas. The 
formalism of equation (1) is partially maintained (in 
differential form, see equation (5)) and it is accepted that 
the activation energy is temperature dependent. We there- 
fore propose to go a step further and to maintain the 
formalism of equation (1) fully. Equation (1) is then 
replaced by: 

In v/•- o = Q ( T ) / R T  (7) 

in which Q ( T )  is now a (real) activation energy depend- 
ing on T. 

If  Q ( T )  is independent of  T, equations (5) and (7) lead 
to the same results. However, if Q(T) varies with T (non- 
Arrhenius behaviour), Q will differ from Qapp. In equa- 
tion (7), a change in T affects r via the denominator as 
well as the numerator. If the last effect is omitted, dif- 
ferentiation of equation (7) results in equation (5). Per- 
forming the differentiation correctly, equation (7) yields: 

d i n - r i d ( l / T )  = (1 /R)[Q - T d Q / d T ]  

= (Q/R)[1 - din Q/d in  T] (8) 

POLYMER Volume 38 Number 3 1997 733 



Glass forming polymeric liquids. L. C. E. Struik 

10 3 

kJ/mol 

T 
-5 10 2 

mlog a T ~ ~ ~------.--.~Q _ 

I 
-10 10 t 

0 5 0  _ ~ . r ' ~ . .  1 0 0  
, T-To, °C 

Figure ! Plots of: shift log a r according to the WLF equation with the 
'universal" constants clg 17.4 and c?~ 51.6 C and a Tz,-value of 
10ft:C: apparent activation energy Qapp corresponding to this WLF 
equation and calculated with equation (6); activation energy Q, cor- 
responding to this WLF equation and calculated with equation ( 11 ) 
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Figure 2 Real activation energy' Q (slope of secant to the ln(r/'r0) ~s 
1/T plot; c.f. equation (7)) and apparent activation energy Qapp (slope 
of In r vs 1/T curve: c.f, equation (5)). The heavy curve is schematical 

and Q and Qapp are related by: 

Qapp = Q(T)[1 - dlnQ(T)/dln 7" I (9) 

which shows that Qapp will be (much) greater that the real 
activation energy if Q decreases with increasing tempera- 
ture. A graphical illustration of  the differences between Q 
and Qapp is given in Figure 2. 

In the example of WLF behaviour, equation (7) gives: 

Q(T)/RT = ln(~/r0)  

- 2 .303Qg(T-  T~)/[c:g + T-- ~i  (10) 

The ln(rg/r0) term can be expressed in terms of cl~ if the 
WLF equation is assumed to hold over the whole 
temperature range above Tg, i.e. up to T --+ .x*. Quantity 
ln(r/rg)T__. ~ then equals -2.303 clo and rT_~ equals the 
r0 of equation (1). Thus ln(rg/ro~ = 2.303 elg. Substi- 
tuting this into equation (10), we obtain: 

Q(T) = 2.303Rc,gc2gT/[e2g + T -  T~] (11) 

which replaces equation (6). Note that equations (6) and 
(11) have the same form, except that the squares in 
equation (6) are replaced by first powers in equation ( 11 ). 
Note further that equations (2), (6) and (11) are identical 

in that they all describe the same In r vs T behaviour: the 
differences lie in the definition of the activation energies 
used (Q~pp vs Q). Note finally that, if WLF applies over 
the whole temperature range above ~ ,  the same holds 
for equations (6) and (11). 

The course of activation energy, Q vs T corresponding 
to WLF is also given in Figure 1. We observe that Q is 
much lower than Q~pp, much less depending on T and of 
the same magnitude as that for secondary processes. So, 
most of the erratics in the activation behaviour above T¢ 
have disappeared. 

An interesting result is obtained by calculating Tg by 
means of equation (7). Tg is defined as the temperature 
where r reaches some characteristic value rg of about 
1000 s (see below). So, Tg is the solution of the equation: 
Q(T)/RT = ln(rg/r0) which has a single, well-defined 
root when ln(r/r0) = Q(T)/RT decreases with increas- 
ing temperature as usual. Denoting the Q value at T~ by 
Qg (note that Q~ depends on the time ~ chosen), equa- 
tion ( 11 ) yields: 

Tg = Qg/(2.303Rc@ = Q~/332 (12) 

m which we substitute the "universal" c~ value of 17.4 
whilst Qg is expressed in J tool -1. Equation (12) shows 
that Tg is proportional to the activation energy Qg, just 
as found for the transition temperatures of secondary 
processes, and should be expected when the r0 in 
equation (1) has a 'universal' value of 10 -14 S 2"3'11.12. 

Remarkably, the proportionality constant (transition 
temperature/Q) is the same as for secondary processes. 
For Tg, the WLF equation leads to a value of 1/332 
(equation (12)). To find the corresponding constant for 
secondary relaxations (see ref. 11) we have to compare 
the transitions at equal values of the characteristic time 
or frequency; so we need to know time/frequency for the 
glass transition. This can be found from Kovacs' paper 13. 
where it is shown that 7"8, as defined from the intercept of 
the volume curves of liquid and glass, corresponds to a 
relaxation time rg of about 2.3/q in which q is the cooling 
rate in :C s -j . This order of magnitude estimation agrees 
with experimental data. For example, Peyser 14 measured 
the relaxation time at T~ after cooling a polystyrene 
sample at 10°Cmin-I: he found a time of l l s  which 
compares well with Kovacs" order of magnitude estimate 
) o - 1 • • . t f 14 s for 10 C mln . Since Trg is usually determined for 
cooling rates of 0.1 I'~C min- , we arrive at a character- 
istic time of 140-1400 s, which agrees with Kauzmann's 
order of magnitude estimate of several minutes to hours ~5t. 
Since 17 time t corresponds to a frequency u of about 
I ,' (_Trt), the charactenstm frequency for T~ is 10 " Hz at 
q =  1 Cmin t and 10 -4Hz at q = 0.1°Cmin-J. Substi- 

18 tuting this into Heijboer's equation , we find a propor- 
tionality constant of 1/306 for l°Cmin -l and 1/325 for 
0.1:Cmin -I. This agrees very well with equation (12) 
which was independently derived from the WLF equa- 
tion with Qg = 17.4, So, glass transition and thermal 
activation theory appear less antagonistic than usually 
assumed. 

* This is not entirely correct. In general, the WLF behaviour breaks 
down at about 100' above Tg and changes into an Arrhenius 
behaviour j 3. The effect of this on the present argument is limited 
'~ O'Reitly's 16 data however strongly deviate. He finds relaxation times 
rg at Tg varying between 1 and 108 s (up to 3 years). He also finds r 0 

2"7 ~68 values of 10 10-- s. These unrealistic values probably reflect 
inconsistencies in the Narayanaswamy equation used for analysing the 
differential scanning calorimetry data of polymers 
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Conclusions 

1. Fo r  non-Arrhenius  relaxation processes above Tg, the 
concept  o f  an apparent  activation energy Qapp, 
defined as the slope o f  the In r vs 1 / T  curve is a half- 
hearted a t tempt  to describe non-Arrhenius  behaviour  
with an Arrhenius formalism. 

2. Full application o f  the Arrhenius formalism leads 
to an activation energy Q that  is much smaller and 
much less temperature dependent  than Qapp. The Q 
values found at and above Tg compare  with those for 
secondary relaxation processes below Tg. Moreover ,  
for the glass transition, the ratio between transit ion 
temperature and activation energy is the same as for 
secondary transitions below Tg (provided that the 
frequencies are taken as equal). 

3. As a consequence o f  conclusion 2, we conclude that  
much  of  the well-known problems with the applica- 
tion o f  thermal activation theory to glass transition 
disappears when the Qapp concept  is abandoned.  
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